Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22.307
1.
Molecules ; 29(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38731651

The main objective of this study was to investigate the metabolism of miconazole, an azole antifungal drug. Miconazole was subjected to incubation with human liver microsomes (HLM) to mimic phase I metabolism reactions for the first time. Employing a combination of an HLM assay and UHPLC-HRMS analysis enabled the identification of seven metabolites of miconazole, undescribed so far. Throughout the incubation with HLM, miconazole underwent biotransformation reactions including hydroxylation of the benzene ring and oxidation of the imidazole moiety, along with its subsequent degradation. Additionally, based on the obtained results, screen-printed electrodes (SPEs) were optimized to simulate the same biotransformation reactions, by the use of a simple, fast, and cheap electrochemical method. The potential toxicity of the identified metabolites was assessed using various in silico models.


Mass Spectrometry , Miconazole , Microsomes, Liver , Miconazole/chemistry , Miconazole/metabolism , Humans , Chromatography, High Pressure Liquid/methods , Microsomes, Liver/metabolism , Mass Spectrometry/methods , Electrochemical Techniques/methods , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Biotransformation
2.
Drug Des Devel Ther ; 18: 931-939, 2024.
Article En | MEDLINE | ID: mdl-38560524

Purpose: To study the potential drug-drug interactions between tofacitinib and baohuoside I and to provide the scientific basis for rational use of them in clinical practice. Methods: A total of eighteen Sprague-Dawley rats were randomly divided into three groups: control group, single-dose group (receiving a single dose of 20 mg/kg of baohuoside I), and multi-dose group (receiving multiple doses of baohuoside I for 7 days). On the seventh day, each rat was orally administered with 10 mg/kg of tofacitinib 30 minutes after giving baohuoside I or vehicle. Blood samples were collected and determined using UPLC-MS/MS. In vitro effects of baohuoside I on tofacitinib was investigated in rat liver microsomes (RLMs), as well as the underlying mechanism of inhibition. The semi-inhibitory concentration value (IC50) of baohuoside I was subsequently determined and its inhibitory mechanism against tofacitinib was analyzed. Furthermore, the interactions between baohuoside I, tofacitinib and CYP3A4 were explored using Pymol molecular docking simulation. Results: The administration of baohuoside I orally has been observed to enhance the area under the concentration-time curve (AUC) of tofacitinib and decrease the clearance (CL). The observed disparity between the single-dose and multi-dose groups was statistically significant. Furthermore, our findings suggest that the impact of baohuoside I on tofacitinib metabolism may be a mixture of non-competitive and competitive inhibition. Baohuoside I exhibit an interaction with arginine (ARG) at position 106 of the CYP3A4 enzyme through hydrogen bonding, positioning itself closer to the site of action compared to tofacitinib. Conclusion: Our study has demonstrated the presence of drug-drug interactions between baohuoside I and tofacitinib, which may arise upon pre-administration of tofacitinib. Altogether, our data indicated that an interaction existed between tofacitinib and baohuoside I and additional cares might be taken when they were co-administrated in clinic.


Cytochrome P-450 CYP3A , Flavonoids , Piperidines , Pyrimidines , Tandem Mass Spectrometry , Rats , Animals , Rats, Sprague-Dawley , Cytochrome P-450 CYP3A/metabolism , Chromatography, Liquid , Molecular Docking Simulation , Microsomes, Liver/metabolism
3.
Chem Pharm Bull (Tokyo) ; 72(4): 393-398, 2024.
Article En | MEDLINE | ID: mdl-38644165

Preparation of drug metabolites at the milligram scale is essential for determining the structure and toxicity of drug metabolites. However, their preparation using recombinant proteins and human liver microsomes (HLM) is often difficult because of technical and ethical issues. Reproducing human drug metabolism in food-derived microorganisms may be useful for overcoming these challenges. In this study, we identified an unknown metabolite of the anaesthetic drug lidocaine, which is metabolised by HLM. By screening for lidocaine metabolic activity in five types of foods (blue cheese, shiitake mushroom, natto, yoghurt, and dry yeast), we found that bacteria isolated from natto reproduced the lidocaine metabolic reaction that occurs in HLM. A fraction containing the unknown lidocaine metabolite was prepared through mass cultivation of a Bacillus subtilis standard strain, ethyl acetate extraction, open column chromatography, and HPLC purification. We identified the unknown metabolite as 3-(2,6-dimethylphenyl)-1-ethyl-2-methyl-4-imidazolidinone using NMR. Our results showed that food-derived microorganisms can produce large amounts of human drug metabolites via large-scale cultivation. Additionally, food microorganisms that can reproduce drug metabolism in humans can be used to examine drug metabolites at a low cost and without ethical issues.


Lidocaine , Microsomes, Liver , Humans , Microsomes, Liver/metabolism , Microsomes, Liver/chemistry , Lidocaine/metabolism , Lidocaine/chemistry , Lidocaine/analysis , Bacillus subtilis/metabolism , Molecular Structure , Chromatography, High Pressure Liquid
4.
SAR QSAR Environ Res ; 35(4): 285-307, 2024 Apr.
Article En | MEDLINE | ID: mdl-38588502

Heritage agrochemicals like myclobutanil, oxyfluorfen, and pronamide, are extensively used in agriculture, with well-established studies on their animal toxicity. Yet, human toxicity assessment relies on conventional human risk assessment approaches including the utilization of animal-based ADME (Absorption, Distribution, Metabolism, and Excretion) data. In recent years, Physiologically Based Pharmacokinetic (PBPK) modelling approaches have played an increasing role in human risk assessment of many chemicals including agrochemicals. This study addresses the absence of PBPK-type data for myclobutanil, oxyfluorfen, and pronamide by generating in vitro data for key input PBPK parameters (Caco-2 permeability, rat plasma binding, rat blood to plasma ratio, and rat liver microsomal half-life), followed by generation of PBPK models for these three chemicals via the GastroPlusTM software. Incorporating these experimental input parameters into PBPK models, the prediction accuracy of plasma AUC (area under curve) was significantly improved. Validation against rat oral administration data demonstrated substantial enhancement. Steady-state plasma concentrations (Css) of pronamide aligned well with published data using measured PBPK parameters. Following validation, parent-based tissue concentrations for these agrochemicals were predicted in humans and rats after single or 30-day repeat exposure of 10 mg/kg/day. These predicted concentrations contribute valuable information for future human toxicity risk assessments of these agrochemicals.


Models, Biological , Triazoles , Animals , Humans , Rats , Administration, Oral , Male , Nitriles/pharmacokinetics , Nitriles/toxicity , Quantitative Structure-Activity Relationship , Caco-2 Cells , Risk Assessment , Microsomes, Liver/metabolism , Tissue Distribution , Fungicides, Industrial/pharmacokinetics , Fungicides, Industrial/toxicity , Fungicides, Industrial/administration & dosage , Fungicides, Industrial/blood
5.
Xenobiotica ; 54(4): 211-216, 2024 Apr.
Article En | MEDLINE | ID: mdl-38591142

To uncover the effect of danshensu on irbesartan pharmacokinetics and its underlying mechanisms.To investigate the effect of danshensu on the pharmacokinetics of irbesartan, Sprague-Dawley rats (n = 6) were orally administered 30 mg/kg irbesartan alone (control group) or pre-treated with 160 mg/kg danshensu (experimental group). The effect of danshensu on the metabolic stability of irbesartan in RLMs was examined by LC-MS/MS method. The effect of danshensu on CYP2C9 activity was also determined.Danshensu markedly increased the AUC(0-t) (9573 ± 441 vs. 16157 ± 559 µg/L*h) and Cmax (821 ± 24 vs. 1231 ± 44 µg/L) of irbesartan. Danshensu prolonged the t1/2 (13.39 ± 0.98 vs. 16.04 ± 1.21 h) and decreased the clearance rate (2.27 ± 0.14 vs. 1.19 ± 0.10 L/h/kg) of irbesartan. Danshensu enhanced the metabolic stability of irbesartan in vitro with prolonged t1/2 (36.34 ± 11.68 vs. 48.62 ± 12.03 min) and reduced intrinsic clearance (38.14 ± 10.24 vs. 28.51 ± 9.06 µL/min/mg protein). Additionally, the IC50 value for CYP2C9 inhibition by danshensu was 35.74 µM.Danshensu enhanced systemic exposure of irbesartan by suppressing CYP2C9. The finding can also serve as a guidance for further investigation of danshensu-irbesartan interaction in clinical practice.


Drug Interactions , Irbesartan , Lactates , Rats, Sprague-Dawley , Irbesartan/pharmacology , Animals , Lactates/metabolism , Rats , Cytochrome P-450 CYP2C9/metabolism , Male , Biphenyl Compounds , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Tandem Mass Spectrometry , Tetrazoles/pharmacokinetics , Tetrazoles/pharmacology
6.
Eur J Pharm Sci ; 197: 106773, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38641124

Cytochrome P450 (CYP) system is a critical elimination route to most pharmaceuticals in human, but also prone to drug-drug interactions arising from the fact that concomitantly administered pharmaceuticals inhibit one another's CYP metabolism. The most severe form of CYP interactions is irreversible inhibition, which results in permanent inactivation of the critical CYP pathway and is only restored by de novo synthesis of new functional enzymes. In this study, we conceptualize a microfluidic approach to mechanistic CYP inhibition studies using human liver microsomes (HLMs) immobilized onto the walls of a polymer micropillar array. We evaluated the feasibility of these HLM chips for CYP inhibition studies by establishing the stability and the enzyme kinetics for a CYP2C9 model reaction under microfluidic flow and determining the half-maximal inhibitory concentrations (IC50) of three human CYP2C9 inhibitors (sulfaphenazole, tienilic acid, miconazole), including evaluation of their inhibition mechanisms and nonspecific microsomal binding on chip. Overall, the enzyme kinetics of CYP2C9 metabolism on the HLM chip (KM = 127 ± 55 µM) was shown to be similar to that of static HLM incubations (KM = 114 ± 14 µM) and the IC50 values toward CYP2C9 derived from the microfluidic assays (sulfaphenazole 0.38 ± 0.09 µM, tienilic acid 3.4 ± 0.6 µM, miconazole 0.54 ± 0.09 µM) correlated well with those determined using current standard IC50 shift assays. Most importantly, the HLM chip could distinguish between reversible (sulfaphenazole) and irreversible (tienilic acid) enzyme inhibitors in a single, automated experiment, indicating the great potential of the HLM chip to simplify current workflows used in mechanistic CYP inhibition studies. Furthermore, the results suggest that the HLM chip can also identify irreversible enzyme inhibitors, which are not necessarily resulting in a time-dependent inhibition (like suicide inhibitors), but whose inhibition mechanism is based on other kind of covalent or irreversible interaction with the CYP system. With our HLM chip approach, we could identify miconazole as such a compound that nonselectively inhibits the human CYP system with a prolonged, possibly irreversible impact in vitro, even if it is not a time-dependent inhibitor according to the IC50 shift assay.


Microsomes, Liver , Humans , Microsomes, Liver/metabolism , Cytochrome P-450 CYP2C9/metabolism , Kinetics , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Miconazole/pharmacology , Enzymes, Immobilized/metabolism , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/methods , Sulfaphenazole/pharmacology , Microfluidics/methods
7.
Pharmacol Res Perspect ; 12(3): e1197, 2024 Jun.
Article En | MEDLINE | ID: mdl-38644590

Human cytochrome P450 3A4 (CYP3A4) is a drug-metabolizing enzyme that is abundantly expressed in the liver and intestine. It is an important issue whether compounds of interest affect the expression of CYP3A4 because more than 30% of commercially available drugs are metabolized by CYP3A4. In this study, we examined the effects of cholesterol and cholic acid on the expression level and activity of CYP3A4 in hCYP3A mice that have a human CYP3A gene cluster and show human-like regulation of the coding genes. A normal diet (ND, CE-2), CE-2 with 1% cholesterol and 0.5% cholic acid (HCD) or CE-2 with 0.5% cholic acid was given to the mice. The plasma concentrations of cholesterol, cholic acid and its metabolites in HCD mice were higher than those in ND mice. In this condition, the expression levels of hepatic CYP3A4 and the hydroxylation activities of triazolam, a typical CYP3A4 substrate, in liver microsomes of HCD mice were higher than those in liver microsomes of ND mice. Furthermore, plasma concentrations of triazolam in HCD mice were lower than those in ND mice. In conclusion, our study suggested that hepatic CYP3A4 expression and activity are influenced by the combination of cholesterol and cholic acid in vivo.


Cholesterol , Cholic Acid , Cytochrome P-450 CYP3A , Liver , Microsomes, Liver , Triazolam , Cholic Acid/metabolism , Animals , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Microsomes, Liver/metabolism , Cholesterol/metabolism , Cholesterol/blood , Mice , Liver/metabolism , Liver/drug effects , Male , Triazolam/pharmacokinetics , Triazolam/metabolism , Humans , Mice, Transgenic , Hydroxylation
8.
J Ethnopharmacol ; 330: 118232, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38670407

ETHNOPHARMACOLOGICAL RELEVANCE: Arbutin is a naturally occurring glucoside extracted from plants, known for its antioxidant and tyrosinase inhibiting properties. It is widely used in cosmetic and pharmaceutical industries. With in-depth study of arbutin, its application in disease treatment is expanding, presenting promising development prospects. However, reports on the metabolic stability, plasma protein binding rate, and pharmacokinetic properties of arbutin are scarce. AIM OF THE STUDY: The aim of this study is to enrich the data of metabolic stability and pharmacokinetics of arbutin through the early pre-clinical evaluation, thereby providing some experimental basis for advancing arbutin into clinical research. MATERIALS AND METHODS: We developed an efficient and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining arbutin in plasma. We investigated the metabolic and pharmacokinetic properties of arbutin through in vitro metabolism assay, cytochrome enzymes P450 (CYP450) inhibition studies, plasma protein binding rate analysis, Caco-2 cell permeability tests, and rat pharmacokinetics to understand its in vivo performance. RESULTS: In vitro studies show that arbutin is stable, albeit with some species differences. It exhibits low plasma protein binding (35.35 ± 11.03% âˆ¼ 40.25 ± 2.47%), low lipophilicity, low permeability, short half-life (0.42 ± 0.30 h) and high oral bioavailability (65 ± 11.6%). Arbutin is primarily found in the liver and kidneys and is eliminated in the urine. It does not significantly inhibit CYP450 up to 10 µM, suggesting a low potential for drug interactions. Futhermore, preliminary toxicological experiments indicate arbutin's safety, supporting its potential as a therapeutic agent. CONCLUSION: This study provides a comprehensive analysis the drug metabolism and pharmacokinetics (DMPK) of arbutin, enriching our understanding of its metabolism stability and pharmacokinetics properties, It establishes a foundation for further structural optimization, pharmacological studies, and the clinical development of arbutin.


Arbutin , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Arbutin/pharmacokinetics , Arbutin/pharmacology , Tandem Mass Spectrometry/methods , Animals , Humans , Caco-2 Cells , Male , Chromatography, Liquid/methods , Rats , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Protein Binding , Cytochrome P-450 Enzyme System/metabolism , Biological Products/pharmacokinetics , Biological Products/pharmacology , Biological Products/chemistry , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme Inhibitors/pharmacokinetics , Liquid Chromatography-Mass Spectrometry
9.
Biopharm Drug Dispos ; 45(2): 107-114, 2024 Apr.
Article En | MEDLINE | ID: mdl-38573807

VX-548 is a sodium channel blocker, which acts as an analgesic. This study aims to investigate the gender differences in the pharmacokinetics and metabolism of VX-548 in rats. After intravenous administration, the area under the curve (AUC0-t) of VX-548 was much higher in female rats (1505.8 ± 47.3 ng·h/mL) than in male rats (253.8 ± 6.3 ng·h/mL), and the clearance in female rats (12.5 ± 0.8 mL/min/kg) was much lower than in male rats (65.1 ± 1.7 mL/min/kg). After oral administration, the AUC0-t in female rats was about 50-fold higher than that in male rats. The oral bioavailability in male rats was 11% while it was 96% in female rats. An in vitro metabolism study revealed that the metabolism of VX-548 in female rat liver microsomes was much slower than in male rats. Further metabolite identification suggested that the significant gender difference in pharmacokinetics was attributed to demethylation. The female rat liver microsomes showed a limited ability to convert VX-548 into desmethyl VX-548. Phenotyping experiments indicated that the formation of desmethyl VX-548 was mainly catalyzed by CYP3A2 and CYP2C11 using rat recombinant CYPs. Overall, we revealed that the pharmacokinetics and metabolism of VX-548 in male and female rats showed significant gender differences.


Cytochrome P-450 Enzyme System , Microsomes, Liver , Organothiophosphorus Compounds , Rats , Male , Female , Animals , Sex Factors , Cytochrome P-450 Enzyme System/metabolism , Biological Availability , Microsomes, Liver/metabolism , Administration, Oral
10.
J Med Chem ; 67(8): 6549-6569, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38604131

Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.


Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 4 , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Microsomes, Liver/metabolism
11.
Eur J Drug Metab Pharmacokinet ; 49(3): 393-403, 2024 May.
Article En | MEDLINE | ID: mdl-38642299

BACKGROUND AND OBJECTIVE: The prediction of pharmacokinetic parameters for drugs metabolised by cytochrome P450 enzymes has been the subject of active research for many years, while the application of in vitro-in vivo extrapolation (IVIVE) techniques for non-cytochrome P450 enzymes has not been thoroughly evaluated. There is still no established quantitative method for predicting hepatic clearance of drugs metabolised by uridine 5'-diphospho-glucuronosyltransferases (UGTs), not to mention those which undergo hepatic uptake. The objective of the study was to predict the human hepatic clearance for telmisartan based on in vitro metabolic stability and hepatic uptake results. METHODS: Telmisartan was examined in liver systems, allowing to estimate intrinsic clearance (CLint, in vitro) based on the substrate disappearance rate with the use of liquid chromatography tandem mass spectrometry (LC-MS/MS) technique. Obtained CLint, in vitro values were corrected for corresponding unbound fractions. Prediction of human hepatic clearance was made from scaled unbound CLint, in vitro data with the use of the well-stirred model, and finally referenced to the literature value of observed clearance in humans, allowing determination of the essential scaling factors. RESULTS: The in vitro scaled CLint, in vitro by UGT1A3 was assessed using three systems, human hepatocytes, liver microsomes, and recombinant enzymes. Obtained values were scaled and hepatic metabolism clearance was predicted, resulting in significant clearance underprediction. Utilization of the extended clearance concept (ECC) and hepatic uptake improved prediction of hepatic metabolism clearance. The scaling factors for hepatocytes, assessing the in vitro-in vivo difference, changed from sixfold difference to only twofold difference with the application of the ECC. CONCLUSIONS: The study showed that taking into consideration hepatic uptake of a drug allows us to obtain satisfactory scaling factors, hence enabling the prediction of in vivo hepatic glucuronidation from in vitro data.


Glucuronides , Glucuronosyltransferase , Microsomes, Liver , Solute Carrier Organic Anion Transporter Family Member 1B3 , Telmisartan , Glucuronosyltransferase/metabolism , Telmisartan/pharmacokinetics , Telmisartan/metabolism , Humans , Microsomes, Liver/metabolism , Glucuronides/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Liver/metabolism , Liver/enzymology , Metabolic Clearance Rate , Tandem Mass Spectrometry/methods , Hepatocytes/metabolism , Models, Biological , Chromatography, Liquid/methods , Benzoates/pharmacokinetics , Benzoates/metabolism
12.
Metabolomics ; 20(3): 49, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689195

INTRODUCTION: Untargeted metabolomics studies are expected to cover a wide range of compound classes with high chemical diversity and complexity. Thus, optimizing (pre-)analytical parameters such as the analytical liquid chromatography (LC) column is crucial and the selection of the column depends primarily on the study purpose. OBJECTIVES: The current investigation aimed to compare six different analytical columns. First, by comparing the chromatographic resolution of selected compounds. Second, on the outcome of an untargeted toxicometabolomics study using pooled human liver microsomes (pHLM), rat plasma, and rat urine as matrices. METHODS: Separation and analysis were performed using three different reversed-phase (Phenyl-Hexyl, BEH C18, and Gold C18), two hydrophilic interaction chromatography (HILIC) (ammonium-sulfonic acid and sulfobetaine), and one porous graphitic carbon (PGC) columns coupled to high-resolution mass spectrometry (HRMS). Their impact was evaluated based on the column performance and the size of feature count, amongst others. RESULTS: All three reversed-phase columns showed a similar performance, whereas the PGC column was superior to both HILIC columns at least for polar compounds. Comparing the size of feature count across all datasets, most features were detected using the Phenyl-Hexyl or sulfobetaine column. Considering the matrices, most significant features were detected in urine and pHLM after using the sulfobetaine and in plasma after using the ammonium-sulfonic acid column. CONCLUSION: The results underline that the outcome of this untargeted toxicometabolomic study LC-HRMS metabolomic study was highly influenced by the analytical column, with the Phenyl-Hexyl or sulfobetaine column being the most suitable. However, column selection may also depend on the investigated compounds as well as on the investigated matrix.


Hydrophobic and Hydrophilic Interactions , Metabolomics , Microsomes, Liver , Rats , Animals , Humans , Metabolomics/methods , Microsomes, Liver/metabolism , Chromatography, Reverse-Phase/methods , Graphite/chemistry , Plasma/chemistry , Plasma/metabolism , Chromatography, Liquid/methods , Porosity , Metabolome
13.
Eur J Drug Metab Pharmacokinet ; 49(3): 343-353, 2024 May.
Article En | MEDLINE | ID: mdl-38472634

BACKGROUND AND OBJECTIVE: In vitro glucuronidation of 17ß-estradiol (estradiol) is often performed to assess the role of uridine 5'-diphospho-glucuronosyltransferase 1A1 (UGT1A1) in xenobiotic/drug metabolism. The objective of this study was to determine the effects of four commonly used organic solvents [i.e., dimethyl sulfoxide (DMSO), methanol, ethanol, and acetonitrile] on the glucuronidation kinetics of estradiol, which can be glucuronidated at C3 and C17 positions. METHODS: The impacts of organic solvents on estradiol glucuronidation were determined by using expressed UGT enzymes and liver microsomes from both human and animals. RESULTS: In human liver microsomes (HLM), methanol, ethanol, and acetonitrile significantly altered estradiol glucuronidation kinetics with increased Vmax (up to 2.6-fold) and CLmax (up to 2.8-fold) values. Altered estradiol glucuronidation in HLM was deduced to be attributed to the enhanced metabolic activities of UGT1A1 and UGT2B7, whose activities differ at the two glucuronidation positions. The effects of organic solvents on estradiol glucuronidation were glucuronidation position-, isozyme-, and solvent-specific. Furthermore, both ethanol and acetonitrile have a greater tendency to modify the glucuronidation activity of estradiol in animal liver microsomes. CONCLUSION: Organic solvents such as methanol, ethanol, and acetonitrile showed great potential in adjusting the glucuronidation of estradiol. DMSO is the most suitable solvent due to its minimal influence on estradiol glucuronidation. Researchers should be cautious in selecting appropriate solvents to get accurate results when assessing the metabolism of a new chemical entity.


Dimethyl Sulfoxide , Estradiol , Ethanol , Glucuronides , Glucuronosyltransferase , Microsomes, Liver , Solvents , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Estradiol/metabolism , Estradiol/pharmacology , Glucuronosyltransferase/metabolism , Humans , Solvents/pharmacology , Animals , Kinetics , Ethanol/metabolism , Ethanol/pharmacology , Glucuronides/metabolism , Dimethyl Sulfoxide/pharmacology , Methanol/pharmacology , Methanol/metabolism , Acetonitriles/pharmacology , Acetonitriles/metabolism
14.
Rapid Commun Mass Spectrom ; 38(9): e9730, 2024 May 15.
Article En | MEDLINE | ID: mdl-38456249

RATIONALE: ADB-FUBIATA is one of the most recently identified new psychoactive substance (NPS) of synthetic cannabinoids. The co-use of in vitro (human liver microsomes) and in vivo (zebrafish) models offers abundant metabolites and may give a deep insight into the metabolism of NPS. METHODS: In vivo and in vitro metabolic studies of new synthetic cannabinoid ADB-FUBIATA were carried out using zebrafish and pooled human liver microsome models. Metabilites were structurally characterized by liquid chromatography-high-resolution mass spectrometry. RESULTS: In total, 18 metabolites were discovered and identified in the pooled human liver microsomes and zebrafish, including seventeen phase I metabolites and one phase II metabolite. The main metabolic pathways of ADB-FUBIATA were hydroxylation, dehydrogenation, N-dealkylation, amide hydrolysis, glucuronidation, and combination thereof. CONCLUSION: Hydroxylated metabolites can be recommended as metabolic markers for ADB-FUBIATA because of the structural characteristics and high intensity. These metabolism characteristics of ADB-FUBIATA were useful for its further forensic or clinical related investigations.


Cannabinoids , Perciformes , Animals , Humans , Zebrafish/metabolism , Microsomes, Liver/metabolism , Tandem Mass Spectrometry/methods , Indazoles/analysis , Liquid Chromatography-Mass Spectrometry , Cannabinoids/analysis , Perciformes/metabolism
15.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38548118

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Aristolochic Acids , Mitochondrial Diseases , Humans , Aristolochic Acids/toxicity , Glucuronides/metabolism , Microsomes, Liver/metabolism , Reactive Oxygen Species/metabolism , Glucuronosyltransferase/metabolism , Kinetics , Catalysis , Uridine Diphosphate/metabolism
16.
Drug Metab Pharmacokinet ; 55: 101002, 2024 Apr.
Article En | MEDLINE | ID: mdl-38452615

Drug-metabolizing enzymes are important in drug development and therapy, but have not been fully identified and characterized in many species, lines, and breeds. Liver transcriptomic data were analyzed for phase I cytochromes P450, flavin-containing monooxygenases, and carboxylesterases and phase II UDP-glucuronosyltransferases, sulfotransferases, and glutathione S-transferases. Comparisons with a variety of species (humans, rhesus macaques, African green monkeys, baboons, common marmosets, cattle, sheep, pigs, cats, dogs, rabbits, tree shrews, rats, mice, and chickens) revealed both general similarities and differences in the transcript abundances of drug-metabolizing enzymes. Similarly, Beagle and Shiba dogs were examined by next-generation sequencing (RNA-seq). Consequently, no substantial differences in transcript abundance were noted in different breeds of pigs and dogs and in different lines of mice and rats. Therefore, the expression profiles of hepatic drug-metabolizing enzyme transcripts appear to be similar in Shiba and Beagle dogs and pig breeds and the rat and mouse lines analyzed, although some differences were found in other species.


Chickens , Cytochrome P-450 Enzyme System , Humans , Animals , Dogs , Rats , Swine/genetics , Rabbits , Cattle , Sheep , Chlorocebus aethiops , Macaca mulatta/metabolism , Chickens/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Liver/metabolism , Microsomes, Liver/metabolism , Species Specificity
17.
ACS Appl Bio Mater ; 7(4): 2197-2204, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38431903

Human liver microsomes containing various drug-metabolizing cytochrome P450 (P450) enzymes, along with their NADPH-reductase bound to phospholipid membranes, were absorbed onto 1-pyrene butylamine pi-pi stacked with amine-functionalized multiwalled carbon nanotube-modified graphite electrodes. The interfaced microsomal biofilm demonstrated direct electrochemical communication with the underlying electrode surface and enhanced oxygen reduction electrocatalytic activity typical of heme enzymes such as P450s over the unmodified electrodes and nonenzymatic currents. Similar enhancements in currents were observed when the bioelectrodes were constructed with recombinant P450 2C9 (single isoform) expressed bactosomes. The designed liver microsomal and 2C9 bactosomal bioelectrodes successfully facilitated the electrocatalytic conversion of diclofenac, a drug candidate, into 4'-hydroxydiclofenac. The enzymatic electrocatalytic metabolite yield was several-fold greater on the modified electrodes than on the unmodified bulk graphite electrodes adsorbed with a microsomal or bactosomal film. The nonenzymatic metabolite production was less than the enzymatically catalyzed metabolite yield in the designed microsomal and bactosomal biofilm electrodes. To test the throughput potential of the designed biofilms, eight-electrode array configurations were tested with the microsomal and bactosomal biofilms toward electrochemical 4'-hydroxydiclofenac metabolite production from diclofenac. The stability of the designed microsomal bioelectrode was assessed using nonfaradaic impedance spectroscopy over 40 h, which indicated good stability.


Diclofenac , Diclofenac/analogs & derivatives , Graphite , Humans , Diclofenac/analysis , Diclofenac/metabolism , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Cytochrome P-450 Enzyme System/analysis , Cytochrome P-450 Enzyme System/metabolism , Electrodes
18.
J Chem Inf Model ; 64(8): 3222-3236, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38498003

Liver microsomal stability, a crucial aspect of metabolic stability, significantly impacts practical drug discovery. However, current models for predicting liver microsomal stability are based on limited molecular information from a single species. To address this limitation, we constructed the largest public database of compounds from three common species: human, rat, and mouse. Subsequently, we developed a series of classification models using both traditional descriptor-based and classic graph-based machine learning (ML) algorithms. Remarkably, the best-performing models for the three species achieved Matthews correlation coefficients (MCCs) of 0.616, 0.603, and 0.574, respectively, on the test set. Furthermore, through the construction of consensus models based on these individual models, we have demonstrated their superior predictive performance in comparison with the existing models of the same type. To explore the similarities and differences in the properties of liver microsomal stability among multispecies molecules, we conducted preliminary interpretative explorations using the Shapley additive explanations (SHAP) and atom heatmap approaches for the models and misclassified molecules. Additionally, we further investigated representative structural modifications and substructures that decrease the liver microsomal stability in different species using the matched molecule pair analysis (MMPA) method and substructure extraction techniques. The established prediction models, along with insightful interpretation information regarding liver microsomal stability, will significantly contribute to enhancing the efficiency of exploring practical drugs for development.


Artificial Intelligence , Microsomes, Liver , Microsomes, Liver/metabolism , Animals , Mice , Rats , Humans , Machine Learning , Drug Discovery/methods , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry
19.
Anal Bioanal Chem ; 416(10): 2541-2551, 2024 Apr.
Article En | MEDLINE | ID: mdl-38451277

In this study, an online electrochemistry coupling high-performance liquid chromatography-mass spectrometry (EC-HPLC-MS) technology has been developed for simulating metabolic reactions and rapid analysis of metabolites of flavone, quercetin, and rutin, which are not only widely present compounds with pharmacological activity in nature, but also have structural similarity and variability. The simulated metabolic processes of the substrates (phase I and phase II metabolism) were implemented on the surface of glassy carbon electrode (GCE) by using different electrochemical methods. After online chromatographic separation, the products were transmitted to a mass spectrometer for detection, in order to speculate relevant reaction pathways and structural information of the reaction product. The main metabolites, including methylation, hydroxylation, hydrolysis, and conjugation reaction products, had been successfully identified through the designed in situ hyphenated technique. Furthermore, compared with metabolites produced by in vitro incubation of rat liver microsomes, it was found that the products of electrochemical simulated metabolism were more abundant with diverse metabolic pathways. The results indicated that the proposed method exhibited advantages in the sample pretreatment process and detection cycle without compromising the reliability and accuracy of the results.


Flavonoids , Liquid Chromatography-Mass Spectrometry , Animals , Rats , Chromatography, High Pressure Liquid/methods , Electrochemistry , Flavonoids/metabolism , Microsomes, Liver/metabolism , Oxidation-Reduction , Reproducibility of Results
20.
Biochem Pharmacol ; 223: 116128, 2024 May.
Article En | MEDLINE | ID: mdl-38492781

Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.


Carboxylesterase , Carboxylic Ester Hydrolases , Humans , Animals , Mice , Carboxylesterase/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Microsomes, Liver/metabolism , Liver/metabolism , Hydrolysis , Triglycerides/metabolism
...